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1. 

An approximate solution is obtained for the linearized system of Navier - 

Stokes equations at low Reynolds numbers with boundary conditions correspond- 

ing to the case when axisymmetric normal and radial tangential stresses act 

at the surface of a heavy, viscous incompressible fluid. The axisymmetric 
shape of the free surface is specified at the initial instant of time. An integr- 
al definition of its shape valid for considerable times is obtained for stationary 
perturbations at the surface. Existence of circular waves which not only prop- 

agate from the perturbation source but, also, towards it, is established.Examp- 
les are considered. Waves propagating from the perturbation source are also 
investigated. It is established that the main part of such waves is the same 

for low and high (see, e. g. , [l - 31) Reynolds numbers. 

Let us assume that a heavy incompressible viscous fluid up to the instant of 
time t’ = 0 is at reset in the half-space Z’ < 0 (the z’ -axis is directed counter 
the force of gravity). Let at 2 > 0 the tangential ‘t’ and normal f’ stresses 
begin to act on the free surface, and that the shape of the surface at instant t’ = 0 
is defined in the stationary cylindrical system of coo&rates (8, 8, z’), whose origin 

is on the unperturbed free surface z’ = 0, by an equation of the form Z’ = h’ (r’). 
Assuming that all perturbations are axisymmetric and that the projection of me tang- 

ential stress on the transverse axis is zero. Then -c’ = r’( 8, t’) and f’ = f’(r’ , t’). 
At low Reynolds numbers the axisymmetric problem of the motion of fluid induced ny 

small perturbations on its surface consists of the determination of velocity v’ = {u,.‘, 
r&‘) and hyd~d~amic pressure p’ as functions of r’, z’, t’ of the 1inearizedNavier 

-Stokes equations 

g + Vq’ = vv%“, Vv’ = 0, q’ -_z $ + gz’ (1*1) 

for specified on the unknown free surface Z’ = 5’ (T‘, t’) of normal and tangential 

components of the stress tensor 

pg5’ - PQ’ + 2P~~z,=o = -f’(r’,t’), f& $2 + gq_= -z’(r’, t’) (1.2) 

(in a linear formulation conditions (1.2) are specified at the unperturbed surface Z’ = 
0) and under condition that the u~own functions vanish as Z’ -+ - 00. At the 
initial instant of time 

t’ = 0, v’ = 0, 5’ = h’(r’) (1.3) 

function 5’ satisfies the equation 
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ag’/at’ = u*’ Irho (1.4) 

We introduce the dimensionless variables 

where L is a characteristic length determined by the explicit form of surface pertur- 
bations. 

The substitution of variables 

reduces problem (1.1) - ( 1.4) to the dimensionless form 

$$+ $!$++!+I (1.5) 

aw aBw l aw 
bt =- -Far 

-- ( 1. 6) 
a-2 A- ,w+$ 

at -= ( 1.7) 
dt 

$-2(~++~--+)-23I =Z(r, t) araz z=. 
t = 0, 5 = h(F), cp = w = 0 

We apply to these formulas the Laplace - Carson transformation with respect to 
t t then we apply the zero order Hankel transformation to (1.5). ( 1.7). and (1.8) 

and the first order Hankel transformation with respect to r to (1, 6) and (1.9). To 
denote Hankel representations we use subscripts equal to the transformation order. As 
the result we obtain for the representations a system of ordinary differential equations 

and boundary conditions with constant coefficients. This system is used for determining 
the representations in the class of functions that vanish as z + - 00. Passing to 
the originals we obtain formulas for the free surface shape. For considerable times t 
and stationary perturbations at the surface when t > 0 f = f (r), and z = ‘G (r), 
the free surface shape is defined by 

5 (r, t) = ch (r', t) + 5% (r, t) + t% (r', t) (1.10) 

ch = TshOW(t, s)JO(rs)ds, gn = - Tsfo(S)X(t, s)Jo(rs)ds 
0 0 

& = Isr,(s) Y(t, s) Jo(rs)ds 

0 

(fo, ho) = Tr [f(r), W)l'Jo(rs)dr, ~1 = ~W)Jl(+r 
0 i 
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A = (a + 2~9~ - 4sS’l/cr+sB+Rs 

(1.11) 

where (T is the parameter of the Laplace - Carson transformation, and qk = gk (s} 
are roots of the polynomial 

F (4, 8) = s”(ti -I- 2q’ - 4q + 1) + I? (1. 12) 

In the half-plane Re q > 0 with 0 < s < a sz 1.2R’Ia polynomial (1.12) 
has two complex-conjugate roots qz = &, and when a < s < 00 it has two 
real roots: 0.68 < qt < 1 and 0.30 < qz ( 0.63 . It follows from (1.12) that 

Reqk2<1, O\(s<oo, k=i,2,3,4 ( 1. X3) 

2. Since (1.13) implies the integrability of o (t, s) for 0 \< t G oo ) hence 
from (1.11) we have 

WT 

s 
Q(%S) 1 o(t, sfdt = lim 6 = - 

o”*o R 
0 

Using the integral formula of Fourier - Bessel, from (1.10) and ( 1.11) we obtain 

5% = 
0 t 

From the second of formulas (1.11) follows that 

4 

z F,‘(Pk’ 1 4 = 0 
k=l 

(2. 1) 

(2. 2) 

The explicit expression for w (t, s) is now obtained from the second of formulas 

(1.11) and from (2.2), with allowance for the conversion defined in [4]. in the form 

4 
oft, s) = $2 

c 

qk erfc (- sqk v/T) exp [s2 (q&s - 1) t] 
P,’ fq,, 5) 

(2.3) 
R==l 

Using in the case of considerable times* t the asymptotic expressions for the error fun- 

ction [5] and taking into account (2.2) and (1. 12), for (2.3) we obtain formula 

w(t, s) = -& 
c 

Pk exp [ss (P,” - 1) t1 

4q + QR - 1 
+ 0 ( t”lze-stf) (2.4) 

Rwk>o 
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From (2.1) and (2.4) we have 

t400, t=--- f k” + t$‘(r , t) + p (r, t) (2.5) 

From (1.12) we obtain 

qr = s~~bR~i~~~i~ - lJ~s~~~R-‘t&e-i~/4 + 0 fs), s + 0 (2.6) 

q1=1-- ‘/@-311 + 0 (s-l)], s + 0 

This with (1.13) shows that the main contribution to the asymptotic expansion of 
integrals (2.5) as t + 00 is provided by the neighborhoods of zero values of expon- 

ent indices. In the first of integrals (2.5) that neighborh~d coincides with that of 
point s = 0. The related contribution is obtained by substituting a small segment 
0 < s < e for the integration interval, taking into account that in that region by 
virtue of (2.6) 

and Integrating from 0 to 00 . We have 

La =+T 
(1) se-sS’lfO (s) JO (rs) cos (t I/%) ds, t 4 00 (2.7) 

0 

The main contribution to the asymptotic expansion of the second of integrals (2.5) as 
t --f 00 is provided by the neighbo~ood of an infinitely distant point. By virtue of 

(2.6) we have 

sa(q19-*)-- -& $a(q12_qq~qla+ql_*) --+’ S-+00 

Hence 

~~‘=~~SeXP[~]IO(s)~o(rs~ds, t400 
0 

(2.8) 

Formulas (2.5), (2.7) and (2.8) define the asymptotic behavior of perturbations on the 
surface, induced by stationary normal pressures. From (I.. 10) we similarly obtain the 
integral representations of the free surface shape due to it initial rise. It is of the form 

511 = Shflf (r, t) + &JZ’ (r, t), t -+ 00 (2.9) 

se-2s’tJt0 (s) JO (rs) cos (t 1/E) ds 
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Under the action of stationary radial tangential StreSsa we have 

k = %%‘U (r, t) + w (r, t), d -+ 00 (2,lO) 

P im =-- s R. 
se-2s*fzl (s) Jo (73) 60s (t j/7@) ds 

g2’ = +ppe, [+I Jo(rs)ds 
0 

3. We shall now consider several specific examples. 

1’. The asymptotic behavior of the surface of fluid from which a cylinder of rad- 
ius U’ initially submerged to a depth h’ is removed at t’ = 0 . 

The initial shape of the free surface is defined in dimensionless variables by 

o<r<a, h(r) = -A; r > a, h(r) = 0 
(3.1) 

V’ = f&&&‘, L Z VJVa, a = qg’V-2q% 

h = h’ / (RL), R = gv2V’ 

where V’ is the volume of fluid displaced by the cylinder at the initial instant oftime. 

From (3.1) and (1.10) we obtain 

ho (~1 = -uh~l(~s) ,’ s (3.2) 

Formula (2.9) then assumes the form 

(3.3) 

Let us consider the asymptotic behavior of the fluid surface when a and 1 are 
large. The neighborhood of point S = 0 is in this case immaterial. Hence, using 
asymptotic formulas for Bessel functions for large values of the argument, we obtain 

5,1P) z -_2n-rha1/*r-*iz {sgn (r - a) Im K,ieifi/4 (2Rt[ r - a I)‘/%] - (3.4) 

Re K,te~ai* (2R t (r + a)Pl) 

where R0 is the Macdonald function, 
When ?’ >> a, using the asymptotic formulas for theMacdonald functions, we 

have 
f&(2> = h[2aa / (“2’2p*)li’4 c (r, t) 

E (r, t) = exp (-p*“o) sin (xi8 + p*“z) sgn (1. - a) 

p* =R \r-alt 

(3.5) 

In the neighborhood of the circle r = a formula (3.4) assumes the form 

chf2) = -2hn’l sgn (r - a) Im X8(ei@4 f%p*) 
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which shows that damping of fluid oscillations occurs also in the neighborhood of r = 
a . For 2R 1 r - a 1 t < 1 and small z we obtain 

K,(z) - In (2 / z), &,12) - ll,h sgn (r - a) 

Consequently in this case the free surface height at transition over ttie circle r = a 
changes abruptly from (- h / 2) to h / 2. 

For the neighborhood of r = 0 formula (3.3) yields 

Substituting here the asymptotics for considerable values of the argument for J1 we 

obtain 
&,c2) = -h ‘t/zexp (- VaRt) cos v/aRt 

It follows from (3.5) that in this case perturbations ch(‘) are waves propagating at 
velocity (a’ - r’) / t’ toward the source, i.e. to the circle r’ = a’. In the cour- 
se of time the perturbations are damped at any r’. The slowest damping occurs in 

the neighborhood of the perturbations source r’ = a’. 

Waves Lt) and t;‘;“’ represent similar perturbations (see (2.8) and (2.10) which 

also propagate toward their sources. The possibility of existence of such waves is revea- 
led here for the first time. 

In the investigation of perturbations (2.9) we set a - 0 and h - do so that V = 

Nash = con&. Formula (3.2) assum= the form h, (s) = -V / (2~) , and conseq- 
uently m 

#‘= - I&- S 5'tLip (- Wt)J, (1 a) c;.d(t fK) d# 

0 

(3.6) 

which shows that near the coordinate origin perturbations @) are not of an oscillatory 
character. 

Substituting for the Bessel function the respective asymptotics with r - CO , we 
obtain 

t - x, I;+u = -2-‘l~~-*“Vt-“.Lr-” fie (jl + ,a) (3.8) 
a, 1 

ik = I 
z2 exy (- 2x9 esp (1 I+ o (‘1x2 + x) + zz/4]} dx 

” 
3, = /y-‘. 1g-‘. r,‘-*,.; k= I,2 

where the plus sign corresponds to k = 1 and the minus sign to k = 2. 

The asymptotic formula for il with w -t CO is obtained by the method of station- 
ary phase [S] in the form 
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(3‘ 9) 

The function in the index of the oscillating exponent in 1s 
points for x > 0. Hence the estimate of 1s assume the form 

has no stationary 

1s -- 0 (w-“r-“y-3i3 (3.lO) 

It follows from (3.8) and (3.9) that when r and t are independent, jr vanislr- 
es exponentially as o -+ CO and 1% predominates in (3.8). If, however, r and 
t are linked by the condition q (r, f) = const , then j, = 0 (o-%-~‘@J’~) , and 

jr exceeds the value [of jz in] (3.10). Thus perturbations &’ virtually vanish 
everywhere, except in region q = const , where they conform to (3.9). In dim- 
ensional form, taking into account (3.7) and (X8), we have 

(3. 11) 

The condition q = conat means that circular waves (3.11) propagate from the pert- 
urbation source at velocity 5r’ I&‘. 

2”. The model of anticyclone at the fluid surface. In this case we assume the 
tangential stresses to be defined by z’ (r’) = T’8 (r’ - a’) , where T’ is the work 

of the radial tangential stresses on the surface per unit area of their propagation. 

Let us assume that T’ --+ CO and a’ - 0 but the work A’ = r&T’ = con&. 

From formula (2.10) we then obtain 

3”. f’ (r’) = f’ for 0 Q r’ < a’ and f’ (r’) = 0 for r’ > a’. 
If a’ + 0 and f’- 00, but P’= na’af’ = cons& we have a concentrated force 

acting on the free surface along the normal to it. In that case from (2.7) we have 

p”’ _ PV v’z 
n 83tpr’S exp ( - *) co3 (G) 

We note in conclusion that formula (3.11) coincides within 0 (R) with that obtain- 

ed in fl] by analyzing the exact solution of problem (1.1) - ( 1.4) for small values of 
parameter E = vg-‘l*Ldl* = R-‘k This means that the main part of the wave prop- 

agating from the perturbation source is the same for small and considerable values of 

R. In other words, the integral representations (2. ‘I), (2.9) and (2. lo), as well as 
the corresponding results obtained in Cl] are valid for small and large values of para- 
meter R = .P. 
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